Problems on Factorization Using a2 - b2 = (a + b)(a - b)
Here we will solve different types of Problems on Factorization using a^2 – b^2 = (a + b)(a – b).
1. Factorize: 4a^2 – b^2 + 2a + b
Solution:
Given expression = 4a^2 – b^2 + 2a + b
= (4a^2 – b^2) + 2a + b
= {(2a)^2 – b^2} + 2a + b
= (2a + b)(2a – b) + 1(2a + b)
= (2a + b)(2a – b + 1)
2. Factorize: x^3 – 3x^2 – x + 3
Solution:
Given expression = x^3 – 3x^2 – x + 3
= (x^3 – 3x^2) – x + 3
= x^2(x – 3) – 1(x – 3)
= (x – 3)(x^2 – 1)
= (x – 3)(x^2 – 1^2)
= (x – 3)(x + 1)(x - 1)
3. Factorize: 4x^2 – y^2 + 2x – 2y – 3xy
Solution:
Given expression = 4x^2 – y^2 + 2x – 2y – 3xy
= x^2 – y^2 + 2x – 2y + 3x^2 – 3xy
= (x + y)(x – y) + 2(x – y) + 3x(x – y)
= (x – y)(x + y + 2 + 3x)
= (x – y)(4x + y + 2)
4. Factorize: a^4 + a^2b^2 + b^4
Solution:
Given expression = a^4 + a^2b^2 + b^4
= a^4 + 2a^2b^2 + b^4 - a^2b^2
= (a^2)^2 + 2 ∙ a^2 ∙ b^2 + (b^2)^2 - a^2b^2
= (a^2 + b^2)^2 – (ab)^2
= (a^2 + b^2 + ab)( a^2 + b^2 – ab)
5. Factorize: x^2 – 3x - 28
Solution:
Given expression = x^2 – 3x - 28
= {x^2 – 2 ∙ x ∙ + ()} – () - 28
= (x - ) – ( + 28)
= (x - ) –
= (x - ) – ()
= (x - + )(x - - )
= (x + 4)(x – 7)
6. Factorize: x^2 + 5x + 5y – y^2
Solution:
Given expression = x^2 + 5x + 5y – y^2
= (x^2 – y^2) + 5x + 5y
= (x + y)(x – y) + 5(x + y)
= (x + y)(x – y + 5)
7. Factorize: x^2 + xy – 2y - 4
Solution:
Given expression = x^2 + xy – 2y – 4
= (x^2 – 4) + xy – 2y
= (x^2 – 2^2) + y(x – 2)
= (x + 2)(x – 2) + y(x – 2)
= (x - 2)(x + 2 + y)
= (x - 2)(x + y + 2)
8. Factorize: a^2 – b^2 – 10a + 25
Solution:
Given expression = a^2 – b^2 – 10a + 25
= (a^2 – 10a + 25) – b^2
= (a^2 – 2 ∙ a ∙ 5 + 5^2) – b^2
= (a – 5)^2 – b^2
= (a – 5 + b)(a – 5 – b)
= (a + b – 5)(a – b – 5)
9. Factorize: x(x – 2) – y(y – 2)
Solution:
Given expression = x(x – 2) – y(y – 2)
= x^2 – 2x – y^2 + 2y
= (x^2 – y^2) – 2x + 2y
= (x + y)(x – y) – 2(x – y)
= (x – y)(x + y – 2).
10. Factorize: a^3 + 2a^2 – a - 2
Solution:
Given expression = a^3 + 2a^2 – a - 2
= a^2(a + 2) – 1(a + 2)
= (a + 2)(a^2 – 1)
= (a + 2)(a^2 – 1^2)
= (a + 2)(a + 1)(a – 1)
11. Factorize: a^4 + 64
Solution:
Given expression = a^4 + 64
= (a^2)^2 + 8^2
= (a^2)^2 + 2 ∙ a^2 ∙ 8 + 8^2 - 2 ∙ a^2 ∙ 8
= (a^2 + 8)^2 – 16a^2
= (a^2 + 8)^2 – (4a)^2
= (a^2 + 8 + 4a)(a^2 + 8 - 4a)
= (a^2 + 4a + 8)(a^2 - 4a + 8)
11. Factorize: x^4 + 4
Solution:
Given expression = x^4 + 4
= (x^2)^2 + 2^2
= (x^2)^2 + 2 ∙ x^2 ∙ 2 + 2^2 - 2 ∙ x^2 ∙ 2
= (x^2 + 2)^2 – 4x^2
= (x^2 + 2)^2 – (2x)^2
= (x^2 + 2 + 2x) (x^2 + 2 – 2x)
= (x^2 + 2x + 2) (x^2 – 2x + 2)
12. Express x^2 – 5x + 6 as the difference of two squares and then factorize.
Solution:
Given expression = x^2 – 5x + 6
= x^2 – 2 ∙ x ∙ + () + 6 - ()
= (x - ) + 6 -
= (x - ) -
= (x - ) – (), [Difference of two squares]
= (x - + )(x - - )
= (x – 2)(x - 3)
Sir ,factorization ma 2nd queaquest galat lgta???
ReplyDeleteKon sa galat ?
Delete